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Correlation of geometry effects with fracture 
toughness by damage equivalence 
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The near crack tip porosity fields in different fracture specimens, single edge notched, single 
edge notched loaded in centre of ligament, three point bending specimens, and small scale 
yielding (SSY) mode have been studied by the finite deformation finite element method. The 
presence and subsequent growth of smaller-scale voids were taken into account by using 
Gurson's model to describe the constitutive behaviour of the material. Based on damage 
equivalence at a characteristic position in the SSY mode and actual fracture specimens, the 
ratio of scaling parameters, Jvalues, in both modes was obtained, and was used to eliminate 
the geometry dependence of fracture toughness through correlations to the small scale 
yielding mode. 

1. Introduction 
For large scale yielding problems in finite bodies, the 
relationship between the scaling parameter, J (Rice's 
J integral [1]), and the near crack tip fields loses the 
one-to-one correspondence [2M]; this loss of unique- 
ness, termed loss of constraint, produces increases in 
fracture toughness observed for tension geometries 
and for shallow notch bend specimens. The mismatch 
of constraint conditions in the tip region apparently 
plays a dominant role in the often disappointing cor- 
relation between different specimen behaviours and 
the behaviour observed in small scale yielding. To 
address the near tip constraint, A1-Ani and Hancock 
[2] and Betegon and Hancock [5] correlated the loss 
of J dominance with the second term, T stress, in the 
asymptotic expansion of the elastic field. The detailed 
elastic-plastic finite element analysis of O' Dowd and 
Shih [3, 4] provided correlations of crack tip stress 
fields over distances of 2 - 86t, where ~t is the crack 
tip opening displacement with loading level, J, loading 
model (tension versus bending), specimen geometry 
and strain hardening. Their computations stimulated 
development of a scaling-hydrostatic stress, J-Q con- 
tinuum mechanics framework [6, 7] to describe the 
near tip fields under very general conditions of loading 
in finite bodies. The Q, hydrostatic stress parameter, 
termed Q stress, quantifies the level of stress triaxiality 
in the tip region. 

Various mechanisms compete to be the controlling 
mode of fracture in metals [8-13]. In most steels, for 
instance, the controlling mechanism of fracture at 
sufficiently low temperatures is brittle cleavage, ac- 
companied by a little plastic deformation, while at 
relatively high temperatures the mechanism is 
primarily nucleation, growth and coalescence of 

microvoids ahead of the crack tip [14, 15]; or, both 
mechanisms may be active. Mechanisms of correlating 
cleavage mode to macroscopic fracture toughness 
were conducted by [16, 17] for a mild steel. The effects 
of constraint on cleavage mode were determined by 
stress fields calculated from finite element analysis 
[18, 19] and J-Q descriptions [6] of crack tip fields. 
But for ductile fracture, where the dominant mecha- 
nism is void coalescence, the effects of constraint on 
stress, deformation, porosity and macroscopic fracture 
toughness still remain open. 

Ductile fracture by void mechanisms has long been 
observed in metals. The fracture process begins with 
the nucleation of voids at inclusions, precipitates, or 
any other weak interface, and this is followed by 
growth of these voids and ultimate fracture of the 
specimen by coalescence of neighbouring voids or the 
void and crack. Rice and Johnson [20] calculated 
the critical crack tip opening displacement of a plane 
strain tensile crack, as a function of inclusion size and 
spacing, using a slip line field analysis that accounts 
for finite geometry change, in conjunction with the 
results of Rice and Tracey [21], for the growth of an 
isolated spherical void. Final coalescence of the void 
with the crack is assumed to occur when the width of 
the ligament between the crack and the void is equal 
to the maximum dimension of the void. The coupling 
of progressive fracture events with the surrounding 
deformation field was addressed by [22-24] through 
large deformation finite element analyses of the inter- 
action between a single cylindrical void and a plane 
strain tensile crack. Aravas and McMeeking [24] used 
standard J2 flow theory in a fully dense material, while 
Aoki et al. [22] and Aravas and McMeeking [23] 
employed Gurson's model [25] to represent the small 
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scale voids as suggested by [26]; Aravas and 
McMeeking [23] also applied the modification of 
Tvergaard and Needleman [27] to predict the coales- 
cence of voids at a realistic void volume fraction. 
Needleman and Tvergaard [28] examined different 
scale void distributions and analysed the microscopic 
fracture mechanism in detail to predict macroscopic 
toughness. Jagota et al. [17] employed Gurson's 
model to study stress and porosity fields near a crack 
tip, and predicted fracture toughness for mode I crack 
in a porous elastic-plastic solid. In each of these stud- 
ies, the small scale yielding (SSY) condition was used, 
i.e. the displacements of linear elastic fracture mech- 
anics (K field) were used as conditions to determine 
the local stresses, deformations and porosities. Re- 
cently, Ma and Kuang [29] analysed stresses, defor- 
mations and porosities in standard fracture specimens, 
and found that the loss of constraint plays an impor- 
tant role in the increase of fracture toughness for 
tension geometries. 

The present work focuses on quantifying speci- 
men geometry effects for initiation of crack growth in 
ductile materials. The near crack tip porosity fields 
in different fracture specimens, single edge notched 
(SEN1), single edge nothccd (SEN2) loaded in centre 
of ligament, three point bending (TPB) specimens, 
which were used in the experiment of Hancock and 
Cowling [30] and SSY mode have been studied by the 
finite deformation finite element method. The pres- 
ence and subsequent growth of smaller scale voids 
were taken into account by using Gurson's model to 
describe the constitutive behaviour of the material. 
A microscopic, void coalescence criterion for initiation 
of crack growth in ductile materials will be adopted to 
relate the macroscopic fracture parameters in different 
actual fracture specimens and SSY mode, which im- 
pose identical damage values at a characteristic posi- 
tion ahead of a blunting crack; and the geometry 
dependence of fracture toughness data for different 
specimens will be eliminated through correlations to 
the SSY mode. 

2. Discussion 
2.1. Constitutive relations 
In order to describe the complete loss of material 
stress carrying capacity at ductile fracture due to the 
coalescence of voids at a realistic level of the void 
volume fraction, Tvergaard and Needleman [27] 
modified Gurson's porous plastic model as follows 

2 
~e 2 f * q l c o s h ( ~  - ~ + 
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-- [1 + (qlf ,)2] = 0 (1) 

where ~e is the macroscopic equivalent stress, (~M is an 
equivalent tensile flow stress representing the actual 
microscopic stress state in the matrix material, ql and 
q2 were introduced by Tvergaard [26] in an attempt 
to make the predictions of Gurson's model agree with 
numerical studies of materials containing periodically 
distributed circular cylindrical voids, f*  is defined 

in [27]  as 

f ,  = {~  forf~<fc 
+ k ( f - f~ )  for f > f~ 

f : - f o  k - (3) 
f F - -  fo 

(2) 

where f represents the current void volume fraction, 
and is a measure of damage of material; fc was pro- 
posed to limit the direct application of Gurson's 
model, andfF denotes the void volume fraction at final 
fracture. Setting (~ij = 0 in Equation 1, it is found that 
the macroscopic stress carrying capacity vanishes for 

f*  = f* = f*(fF)  = 1/ql (4) 

It is assumed that the microscopic equivalent plastic 
strain eu in the matrix material is determined by the 
principle of equivalent plastic work 

(~qD~ = (1--f)(SMg~a (5) 

where the superposed dot denotes the material time 
derivative, D~j is the plastic part of the deformation 
rate tensor, nij. 

1 13 Dij = ~( i,j + vj, i) (6) 

where vi is the velocity component and xi the current 
position component of a material point in Cartesian 
co-ordinates. The relation between (~M and a~ is 

do- M 
hM -- (7) 

d ~  

thus 

~i jD~ (8) 
dM = hM(l__f)(y M 

The changes in the void volume fraction result from 
void nucleation, fN, as well as from the growth of 
existing voids 

J~ = fg,ow~h + J~N (9) 

The growth of existing voids with deformation is de- 
termined from the condition for plastic incompressi- 
bility of the matrix material 

fg,ow,h = (1 -- f)n~k (10) 

The contribution resulting from the nucleation of new 
voids is taken to be 

fN = B(dM + din) + Ag p (ll) 

Void nucleation is taken to follow a normal distribu- 
tion [31], so that stress controlled nucleation is speci- 
fied by 

C~o SN(2~),/2 exp [ -- ~ ((~M ;y~SN-- 

A = 0 (12) 

where fN is the volume fraction of void nucleating 
particles, (YN is the mean critical stress for nucleation, 
and SN is the standard deviation of the normal distri- 
bution. 
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For plastic strain controlled nucleation with mean 
nucleation strain, ~s, analogous expressions are 

A - s N ~ e x p [  --2tl(~P--EN)2~ B = S N  J J; 

The plastic strain controlled nucleation was used in 
the remainder of this paper. 

Similar to classical plasticity [32], the plastic flow 
rule is 

D~Pj = X~-q (14) 

where X is the plastic flow factor determined from the 
consistency condition 

$ = 0 (15) 

during plastic loading. 
Substituting Equations 8-11 into Equation 15, and 

solving for X the constitutive equations for porous 
plasticity are finally found 
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where 

(YD = (~Yij - -  ~'~ip (Ypj - -  (Yik ~-~jk (17) 

is the Jaumann objective rate of Euler stress tensor, 
and f~ is material element spin, 

f l , j  = -  j,i) 

2 . 2 .  F i n i t e  e l e m e n t  s o l u t i o n s  
The updated Lagrangian scheme is used here, the 
variational equation in the rate form [33] is 
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(13) where V is the volume of any part of the body, ST is 
surface where the traction vector, Ti was prescribed; 
F, the body force per unit volume, gvi is an arbitrary 
virtual velocity variation which vanishes where the 
velocity is prescribed. The finite element analysis was 
based on the variational principle, Equation 18, and 
was done incrementally with equilibrium correction at 
the end of each increment. 

The incremental J integral in large scale deforma- 
tion problems is of the form [34] 

AJ = fr(tijAUi, jnl -- h~njAuj, 1 - -  A t i j r l i U l ,  1)ds 

(19) 

where t u is the Lagrange stress tensor and equals the 
Euler stress tensor, oh j, at the beginning of an in- 
crement step, N, but t u is not equal to ~u at the end of 
this step; F is a curve surrounding the crack tip, and 
the integral is evaluated in a contraclockwise sense 
starting from the lower flat crack surface and continu- 
ing along the path to the upper flat surface. 

The specimen geometries and sizes of SEN1, SEN2 
and TPB are shown in Fig. 1, and the ratios of crack 
depth, a, to specimen width, w, in three of the speci- 
mens are equal to 0.5. Eight node isoparametric ele- 
ments are used. The local fine finite element meshl as 

(16) shown in Fig. 2, is surrounded by that shown in Fig. 3, 
the crack tip is modelled as a blunt notch with a radius 
ro of 5 gm. Due to symmetry, half of the specimens 
are simulated by the meshes in Figs 2 and 3. The mesh 
dependence of stress was investigated by Ma and 
Kuang [29]; they found that in the case of no tendency 
for localization of plastic flow, as observed by Aravas 
and McMeeking [23], the finite element mesh in 
Fig. 2 is appropriate to obtain stress, deformation and 
porosity in the vicinity of a blunting crack. 

For the SSY model, the displacement boundary 
conditions imposed at the outer semicircular bound- 
ary are of the form 

U x 
KI 
~ ( 1 +  v ) ~ ( 3 -  4 v -  cos0)cos~ 

uy = ~ - - 2 ( l + v ) ~ ( 3 - 4 v - c o s 0 ) s i n ~  (20) 

where Ux and Uy are Cartesian components of the 
displacement vector, r and 0 are polar co-ordinates 
concentric with the semicircular notch centre, rb is 
the value of r at the outer boundary, KI is the mode 
I stress intensity factor and v is Poisson's ratio, E 
is Young's modulus. In this paper the outer radius of 
the outer perimeter, rb is 2000 times the initial notch 
radius to. The near tip fine finite element mesh is 
shown in Fig. 2. 

The hardening rule of the matrix material in uni- 
axial tensile testing in Gurson's model is specified by 

= ( 2 1 )  
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Figure1 The gometries and sizes of (a) single edge notch (SEN1), (b) 
single edge notched loaded in centre of ligament (SEN2) and (c) 
three point bending (TPB) specimens. 

Figure 2 The local fine finite element mesh for its SSY mode, 
SEN1, SEN2 and TPB specimens 

where cyM and ~o are the flow stress and initial yield 
stress of matrix material, respectively, K and n are 
the hardening parameters. Following Aravas and 
McMeeking [23], the material parameters in Equa- 
tion 1 are taken to be qa = 1.25,fc = 0.15, fF = 0.25, 
aN = 0.3, SN = 0.1, fN = 0.04, the initial void volume 
fraction is taken to be zero. 

When the condition f*  = 1/ql (or equivalently 
f =fv) is met at a material point, no more macroscopic 
stress can be carried and local failure occurs at that 
point. The method proposed by Tvergaard [35], and 
used by Avaras and McMeeking [23], is used here to 
model the material failure process. The constitutive 
law described earlier is used until the void volume 
fraction, f, equals 0.95fv. Subsequently, the failed ma- 
terial is modelled by the elastic-plastic constitutive 

/ 

Figure 3 The finite element mesh surrounding that shown in Fig. 
2 for SEN1, SEN2 and TPB specimens: (w) width, (h) height, (1) 
length. 

equations described in Section 2.1, but with a constant 
volume fraction, f, equal to 0.95fF. Also, at this stage, 
the microscopic yield stress is kept constant. In this 
way, the macroscopic stress state is forced to stay on 
a stress strain curve corresponding to f equal to 
0.95fF, which is obtained by integrating Equation 16 
for an axisymmetric tension with a superposed hy- 
drostatic stress [23]. The condition f =  0.95fv is used 
here also instead o f f = f F  due to the numerical prob- 
lems. 

2.3. Near crack t ip porosi t ies and 
deformat ions  

The material considered here is HY80 steel used in 
Hancock and Cowling [30]; the material para- 
meters are: cs 0 = 560 MPa, n = 0.1, K = 1070 MPa, 
Young's modulus E = 210 GPa  and Poisson's ratio, 
v = 0.3. 

2.3. 1. Crack t ip porosi t ies 
The variation of porosity, f with r ahead of the blunt- 
ing crack tip is shown in Fig. 4a-c for SEN1, SEN2 
and TPB specimens; for comparison, the result for the 
SSY model is also depicted in the figures, the distance 
r is normalized by J/~o. The porosity reaches higher 
values, f =  0.95fF, close to the crack tip, the stress in 
the region is practically zero, i.e. complete loss of the 
stress carrying capacity in this region occurs. It is clear 
that the loss in the SSY model is larger than that in the 
other three specimens, the damaged zone (in which 
f =  0.95fF is satisfied) in the SSY model is larger than 
that in the three other specimens. This may be the 
reason that the finite element result in the SSY model 
underestimates the critical crack tip opening displace- 
ment at fracture initiation. 

As known, material damage results from plastic 
deformation and triaxiality. At lower load levels, the 

2333 



0 . 3  - -  

oo~  
• 

0 . 2 - 0  \ 

O 

A 0 . 1 -  
O 

( a )  

\ 
\ 

e \  
A x \ 
o \ 

1.2 2.4  

roo/J 

I I 
3.6 4.8 

0.3 

~. 0.2 

0.1 

\ 
~ o  \ 
,x \ 

~x ~ \ \ 

�9 \ 
- X 

N 
Z~ x �9 \ 

0 '%- 

" ~  IA x ~ x ~'~"" ~ - -  I I 
1.2 2.4 3.6 4.8 

( b ) r ~ 0 / J  

crack tip region undergoes a little plastic deformation, 
but the triaxial stress achieves a larger level, the dam- 
age is similar to that in the SSY mode. With increasing 
deformation, the crack develops into a notch, the 
triaxial stress decreases; the damage is smaller than 
that in the SSY mode. The other important result, in 
the present context, is that the porosity converges to 
a configuration dependent porosity level at small 
values of Leyo/J with the increasing loads. 

2.3.2. Crack tip openings 
The crack tip opening displacement, ~t, provides 
a convenient length scale to describe the deformation 
in the near tip region. Shih [36] defined 8t as the 
separation where _+ 45 ~ lines emanating from the 
crack intercepts the opening faces, as shown in Fig. 5. 
The crack openings are calculated from SEN1, SEN2 
and TPB specimens and the SSY mode, and are plot- 
ted against the loads of J/c~obo in Fig. 6, where be is 
the initial notch width, be = 2re. It is observed that 
the crack opening in the SSY model is different from 
that in the actual specimens, i.e. the opening depends 
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Figure 4 Porosity (f) in the uncracked ligament as a function of 
distance, r, from the current blunting crack centre at different loads 
in (a) SEN1 specimen and SSY mode, (b) SEN2 specimen and SSY 
mode, and (c) TPB and SSY mode. For Lc~o/J equal to: ( - ) SSY, 
(0)  432, ( x )  127, (A) 53, (O) 24. 

on the specimen's configuration. Therefore, to use the 
SSY mode in fracture analysis underestimates the 
crack tip opening. 

2.4. Correlation of fracture toughness 
with SSY mode 

In ductile fracture, where the dominant mechanism is 
void coalescence, the determination of fracture tough- 
ness, Je, is related directly with the mechanism; math- 
ematically, the criterion for void coalescence is 
assumed to be 

f = fcr at r = re (22) 

that is crack initiation occurs when the porosity ex- 
ceeds a critical value over a characteristic distance, re, 
fer and re are the material's properties. 

For a specific material, the void coalescence cri- 
terion is related to applied J values. From the damage 
distribution along the crack line shown in Fig. 4 for 
different specimens, it is found that in order to main- 
tain an identical damage value at a characteristic 
position, re, for  actual specimens and the SSY mode, 
larger applied load J values in the actual specimens 
need to be achieved. Based on the damage equivalence 
at the characteristic position in the SSY mode and 
actual specimens, the ratios of JssY: J, with damage 
values at a specific position may be obtained from 
damage distribution in Fig. 4, where Jssv is refered to 
the J value in the SSY mode. 

Since the fracture is not catastrophic, i.e. it involves 
some stable crack growth, the value rc depends not 
only on the microstructure, but also on the method 
used to determine initiation of crack growth. In the 
presence of a precipitated second phase Particle, initia- 
tion of a larger void is usual. Ritchie et al. [-16] have 
reported the presence of precipitated carbide at the 
grain boundary, and hence the likely mode of failure 
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Figure 5 The 45 ~ crack tip opening displacement [36]. 
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Figure 6 The crack openings, b/bo, as a function of load, J/c~ybo, in 
~ . ~  SEN1, ( ) SEN2, ( - - -~  TPB specimens and ( )  SSY 
mode. 

involved nucleation of large voids at these carbides 
and failure by growth and linkage with other large 
voids. This may be due to voids of a different size 
nucleating between other voids and between the crack 
tip and the Voids. Hence, the value of rc appreciated to 
this case seems to be on the order of grain diameter. 
But for ductile fracture, the results of Jagota et al. 

recommended the value of ro to be 2.5 grain diameters 
[17], and this is larger than the characteristic distance 
in cleavage mode [16] for a mild steel. For  HYS0 steel, 
Knot t  found, experimentally, that initiation of crack 
growth occurs when coalescence between the crack 
and a void nucleated at a particle with diameter, 2Ro, 
takes place, and the distance, r, between the crack tip 
and the void satisfies that r /Ro  is 68 [37]. Therefore, 
the distance, r, is taken to be the characteristic dis- 
tance, re, in the present study. The crack tip is 
simulated as a notch with a radius, to, of 5 #m; here, it 
is assumed that the diameter of the precipitated par- 
ticle is on the order of the notch diameter. So that, 3, 
4.3, 5 and 5.9 #m are taken as the particle radii of R0, 
respectively, (this corresponds to an ro of 204, 300, 340 
and 400 gin, respectively) to obtain the ratio of 
J values in SSY mode to actual specimens. For differ- 
ent r~, the ratio of J values in SSY mode to actual 
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Figure 7 The ratios of-/ssY J values at: rc equals (O) 204 and (--) 
340 ~tm, respectively, with damage. 

specimens at different damage values may be ob- 
tained. Fig. 7 shows that the ratios obtained for rc are 
204 and ro 340 gin. It is clear that the ratios depend on 
the choice of the characteristic position of re; with 
increasing ro values, the ratio JssY: J decreases, but the 
values of the ratios are always smaller than unity for ro 
considered here. 

To obtain the ratios of J values of different speci- 
mens at fracture initiation, the values offc, andfc need 
to be determined first. Aravas and McMeeking have 
reviewed various coalescence criteria, these criteria 
were compared with finite element calculations of fail- 
ure in ligament between the crack tip and a void using 
Gurson's  model, the various criteria given were sim- 
ilar to those of LeRoy et al. [38], being closest to 
numerical calculations. According to these criteria, 
during void growth, shear localization occurs between 
neighbouring voids, leading to crack initiation. Co- 
alescence is assumed to occur when the largest dia- 
meter of the void, d, is some fraction of the inter void 
spacing, D 

d = kD (23) 

where d is the largest diameter of the void, k is a con- 
stant close to unity, and D is the intervoid distance. 
For  spherical voids, k has been measured to have an 
average value of 0.83 for a number of steels, which 
coincides with the result observed by Hancock 
and Cowling [30] for HYS0 steel. In the case of 
pores remaining roughly spherical ahead of the 
crack tip [23, 29], the pores are part  of a simple cubic 
array, as shown in Fig. 8, and f may be expressed 
as [17] 

red 3 
f - 6(d + D) 3 (24) 

using Equation 23, it is found 

f~r = 0.0489 (25) 
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Figure 8 The geometry assumed in the derivation of for, based on 
LeRoy void coalescence [38]. 
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Figure 9 Experimentally ( x ) determined critical J values for differ- 
ent specimens [-301 and corresponding (O) JssY values by damage 
equivalence at ro = 340 gm. 

This is close to the measured void fractions at fracture 
in LeRoy et al. [-38]. 

Thus it is possible to obtain the ratio of J values in 
the actual specimen compared to that in the SSY 
mode (termed JssY) at fracture initiation from Equa- 
tion 25 and Fig. 7. Using the ratio, the applications are 
two-fold 

1. the geometry dependence of fracture toughness 
data can be eliminated through correlation to the SSY 
mode, and 

2. commonly available test results for standard 
fracture specimens may be appreciably scaled for frac- 
ture assessments of non-standard notched structures. 
Hancock and Cowling have observed the initiation of 
crack growth in different specimens in HY80 steel, the 
crack openings in different specimens show obvious 
changes. According to the relation of J values and 
crack opening shown in Fig. 6, the critical J values in 
SEN1, SEN2 and TPB are given in Fig. 9, using 

2 3 3 6  

the ratio of J: Jssv shown in Fig. 7 and Equation 25, 
the critical J values are converted to Jssv values, the 
Jssv values for three of the specimens are shown 
in Fig. 9; it is found that the JssY values are almostly 
independent of specimen configuration. 

3. Conclusions 
The near crack tip porosity fields in different fracture 
specimens, single edge notched, single edge notched 
loaded in centre of ligament, three point bending spec- 
imens, and small scale yielding mode have been 
studied by the finite deformation finite element 
method. The presence and subsequent growth of 
smaller scale voids were taken into account by using 
Gurson's model to describe the constitutive behaviour 
of the material. For ductile fracture, where the domi- 
nant mechanism is void coalescence, the ratio of 
J values in the SSY mode to different specimens has 
been obtained numerically on the basis of damage 
equivalence at a characteristic position for both 
modes. The ratio of the J values is used to correlate 
the effects of geometry on fracture toughness. 
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